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H I G H L I G H T S  

• Links among economic conditions, green space and warming were assessed for Latin American cities. 
• Better economic conditions exacerbate warming via historical loss of green space. 
• Greening in economically developed cities partially curbs warming. 
• These patterns vary by economic indicator, temperature measures and city subgroups.  
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A B S T R A C T   

Rising temperatures have profound impacts on the well-being of urban residents. However, factors explaining the 
temporal variability of urban thermal environment, or urban warming, remain insufficiently understood, espe-
cially in the Global South. Addressing this gap, we studied the relationship between city-level economic con-
ditions and urban warming, and how urban green space mediated this relationship, focusing on 359 major Latin 
American cities between 2001 and 2022. While effect sizes varied by economic and temperature measures used, 
we found that better economic conditions were associated with lower baseline greenness in 2011, which 
contributed to faster warming. There was modest evidence that this faster warming associated with lower 
baseline greenness and improved economic conditions was partially offset by cooling from recent greening 
(2001–2022) in cities of better economic conditions. This offset was more evident in arid cities. Together, these 
findings provide insights into the urban warming mechanism manifested through the effect of economic con-
ditions on urban green space, for Latin American cities and other high-density cities transforming in a similar 
context.   

1. Introduction 

Globally, urban areas are experiencing unprecedented warming or 
temperature increases over time (Myint et al., 2013; Zhao et al., 2014), 
creating major risks for human health and well-being (Gasparrini et al., 
2017; Jenerette et al., 2016; Weber et al., 2015). Among other factors, 
increased energy use and emissions from urbanization and economic 
development are contributing to greater urban warming (Imhoff et al., 

2010; Myint et al., 2013; Stewart & Oke, 2012). By providing cooling 
from shading and evaporation, urban green space has been increasingly 
used as a means to regulate urban thermal environment (Massaro et al., 
2023). However, urban green space is not evenly distributed within and 
between cities; rather, studies have found socioeconomic disparities of 
urban green space among communities and cities (Casey et al., 2017; Ju 
et al., 2021). Despite some efforts (Jenerette et al., 2006; Y. Li et al., 
2023; Yin et al., 2023), it remains insufficiently understood how these 
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urban green space disparities further affect urban thermal environment. 
Addressing this research gap is of especially great importance for Latin 
American cities, which have high urbanization rates (over 80% popu-
lation living in urban areas, United Nations et al., 2019), large social 
disparities (Quistberg et al., 2018), and elevated heat-related mortality 
risk in hot temperatures (Kephart et al., 2022). In this context, this study 
provides insights into the relationships among urban thermal environ-
ment, city-level economic conditions, and urban green space in Latin 
American cities. Though these efforts, urban policy and management 
will be able to identify the drivers of urban warming and to better target 
cities in the greatest need of urban greening programs. 

The relationship between urban thermal environment, city-level 
economic conditions, and the availability of urban green space is com-
plex and multi-faceted. Generally, advanced industrial cities are asso-
ciated with greater anthropogenic heat releases and transformations of 
blue and green spaces into built-up areas. These may together raise 
urban temperature by several degrees relative to the surroundings, 
known as the urban heat island effect (J. Li et al., 2011; Y. Li et al., 2020; 
Stewart & Oke, 2012). However, these cities may be more resourceful in 
regulating their thermal environment through urban greening (e.g. 
adding green spaces and improving upon existing ones), energy effi-
ciency programs, and increasing the reflectance of surfaces (Ju et al., 
2021; Richards et al., 2017; Yang et al., 2014; X. Zhou & Wang, 2011). 

The connection between urban greening and economic conditions 
may lead to disparities in the distribution of urban green space. These 
disparities have been studied at the neighborhood scale, with findings 
summarized as the “luxury effect” and “deprivation amplification” 
(Leong et al., 2018; Macintyre, 2007; Schell et al., 2020), with some 
recent research focusing on these disparities at the city scale (Ju et al., 
2021; Y. Li et al., 2023). Given the well-documented cooling effect of 
green space (Ziter et al., 2019) and the potential associations between 
economic conditions and green space, it is possible that green space 
affects the relationship between city-level economic conditions and 
urban thermal environment in two simultaneous but opposite directions. 
The historical removal of green space in advanced industrial cities due to 
economic development and urban expansion leads to rising tempera-
ture. However, greening measures in these cities may curb the temper-
ature rise. With some exceptions (Jenerette et al., 2006; Yin et al., 2023), 
these two pathways forming the mediating effect of urban green space 
on the association between economic conditions and urban thermal 
environment, is rarely studied. 

Another understudied topic is the temporal variability of urban 
thermal environment and its drivers. Studies so far have focused on 
explaining the spatial variability of urban thermal environment with 
economic indicators and green space (Jesdale et al., 2013; Richards 
et al., 2017). However, the evidence on the temporal variability of urban 
thermal environment (urban warming hereafter) and its drivers is scarce 
for a large sample of cities of different climate zones and economic 
development levels. One obstacle towards such investigations is the lack 
of consistent longitudinal temperature data with large spatial coverage 
for the cities. 

Spatially explicit datasets on air temperature from climate reanalysis 
(e.g. Muñoz-Sabater et al., 2021) and satellite-derived land surface 
temperature (LST) provide opportunities to obtain wall-to-wall, longi-
tudinal temperature measures for large samples of cities (Clinton & 
Gong, 2013; D. Zhou et al., 2019). While air temperature and LST tend to 
correlate with each other, they differ in physical interpretation and 
spatiotemporal characteristics of their respective data products. Climate 
reanalysis provides indicators such as air temperature (Hersbach, 2019; 
Papangelis et al., 2012; Sharma et al., 2017). However, the spatial res-
olution of climate reanalysis to date is typically too coarse (i.e., often 
greater than 5 km) to capture fine-scale intra-urban climate variations, 
which are influenced by features such as green space, buildings, and 
land uses. Satellite-derived LST provides an alternative to retrieve finer- 
scale historical temperature (Bechtel et al., 2019; Clinton & Gong, 2013; 
Imhoff et al., 2010; Spronken-Smith & Oke, 1998; Voogt & Oke, 2003), 

although one limitation of satellite-derived LST is missing observations 
due to cloud cover. The compatibility between temperature trends 
measured from air temperature and LST may vary across urban geog-
raphies, depending on contributions of different warming agents (Oyler 
et al., 2016; Wang et al., 2017). Generally, this compatibility is expected 
to increase when urban warming directly stems from land cover changes 
detectable by satellites. This would be the case with reduction in green 
space to provide cooling and expansion of impervious surfaces pro-
moting absorption of solar radiation during the day and heat releases at 
night (Imhoff et al., 2010; Stewart & Oke, 2012; Zhao et al., 2014). 
However, other heat sources, including those from vehicle emissions and 
economic activities, are loosely associated with land cover changes 
(Juruš et al., 2016) and therefore are harder to detect with satellite- 
based LSTs. 

Importantly, urban LST and its interpretation also differ between 
daytime and nighttime (Nichol, 2005; Oke, 1976). Daytime LST is often 
more sensitive to contrasts between hotter urban surfaces and cooler 
photosynthetically active vegetation (Azevedo et al., 2016; Nichol, 
2005; Oke, 1976; Wang et al., 2017; Ziter et al., 2019), and in some cases 
daytime LST reflects the snapshot artifacts of building and tree shadows 
(Wang et al., 2017). In contrast, nighttime LST is more representative of 
heat releases from the energy absorbed during the day and broader-scale 
advective processes at spatial scales beyond individual buildings and 
trees (Nichol, 2005; Oyler et al., 2016; Wang et al., 2017; Ziter et al., 
2019). Together, these nuances between air temperature, daytime LST, 
and nighttime LST highlight the need for a comprehensive assessment of 
these temperature indicators while considering their unique sensitivities 
to environmental and economic drivers of urban warming. 

To better understand how different factors shape urban thermal 
environment while considering the nuances between temperature 
measures, we investigate the associations between economic conditions 
and trends of air temperature and daytime and nighttime LSTs (i.e. 
urban warming), and the mediating effect of urban green space on these 
associations. Our sample consists of 359 geographically and socioeco-
nomically diverse major Latin American cities from 10 countries (Fig. 1 
(a)). These cities constitute the study area of the Salud Urbana en 
América Latina (SALURBAL; Urban Health in Latin America) project 
(Quistberg et al., 2018), which investigates the socioeconomic and 
environmental determinants of urban health. Using path analysis in 
structural equation models, we addressed three research questions: (1) 
what is the relationship between city-level economic conditions and 
urban warming? (2) how does urban green space mediate this rela-
tionship? and (3) how do the findings from (1) and (2) vary by different 
economic development levels and climate zones? 

2. Methods 

2.1. Analysis units and timeframe 

Instead of defining a city with its administrative boundary, we 
defined the city by its main urban cluster outlined by the SALURBAL 
study. The main urban cluster is the largest contiguous built-up area in a 
city (Fig. 1(b)). Therefore, we considered it as the hotspot of anthro-
pogenic activities and consequently urban warming. Defining cities by 
main urban clusters is also in line with similar efforts across nations such 
as the EU-OECD delineation of functional urban area (Dijkstra et al., 
2019). We collected the data and calculated each variable by the main 
urban cluster, when possible. However, economic indicators including 
per capita GDP and Social Environment Index (SEI) were only available 
by administrative boundaries (Table S1). Thus, in this article, we refer to 
“city” as its main cluster rather than its administrative boundary, unless 
we specify it differently. The timeframe in this study is from 2001 to 
2022 as determined by the temporal availability of different datasets 
(Table S1). Since we did not have longitudinal data for some economic 
indicators of interest, we performed a cross-sectional analysis in this 
study. More details on how different variables are derived are provided 
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in the sections below. 

2.2. Outcome variable: temperature trend 

For city-level temperature, we used three types of measures, 
including atmospheric temperature (Tair) and daytime and nighttime 
LST (LSTday and LSTnight). Datasets for atmospheric temperature and LST 
are in gridded format, with each grid cell containing multiple observa-
tions over time and each city containing multiple grid cells. We sum-
marized Tair as the area-mean (i.e. averaged over all grid cells in a city) 
of annual-averages (averaged across all observations over time in a grid 
cell) of daily average temperatures from the ERA5-Land reanalysis 
dataset (Copernicus Climate Change Service (C3S), 2019). We obtained 
LST data from MODIS terra land surface temperature 8-day product at 1 
km resolution (MOD11A2.061). In a similar manner to Tair, we calcu-
lated area-mean of annual average LSTday and LSTnight for each city and 
year. The end-product here was city-specific time-series of Tair, LSTday, 
and LSTnight between 2001 and 2022. 

We then calculated the temperature trend as Sen’s slope of the city- 
specific time-series of Tair, LSTday, and LSTnight. Compared with slope 
from linear fit of the temperature time series, Sen’s slope is less sensitive 
to outliers and more robust to non-normal distributions (Sen, 1968). The 
city-specific temperature trend was used as the outcome in this study, 
with a positive trend indicating urban warming and a negative trend 
indicating urban cooling. 

2.3. Exposure variables and mediators 

Economic indicators as exposures. To answer the first research 
question on the associations between economic conditions and warm-
ing, we introduced four exposure variables to measure economic con-
ditions. These variables were per capita Gross Domestic Product (GDP), 
total carbon footprint (Moran et al., 2018), a composite Social Envi-
ronment Index (SEI) (Bilal et al., 2021), and nighttime light intensity 
(NTL). 

First, per capita GDP was obtained from a global dataset developed 
by Kummu et al. (2018). It should be noted that the Kummu et al. dataset 
estimates per capita GDP by 1st-order administrative units (e.g. prov-
inces Argentina and states in Brazil). Therefore, cities in the same 1st- 
order administrative unit share the same per capita GDP value (Gen-
naioli et al., 2013). Despite this limitation, we used this data given its 
harmonized data coverage for our study area. 

Second, we measured total carbon footprint as the amount of CO2 
released into the atmosphere due to human activities, which is estimated 
based on total population and their household expenditures (Moran 
et al., 2018). Data for per capita GDP and total carbon footprint are in 
the gridded format, and we summarized these indicators for each city by 
the area-mean (for per capita GDP) and sum (for total carbon footprint). 

Third, we used SEI, which is the sum of standardized values of the 
proportion of households with access to water and a sewage system in 
the dwelling, the proportion of households that are not overcrowded, 
and the proportion of the population aged 25 years or above that 
completed primary education. Therefore, higher SEI values indicate 
more desirable housing, infrastructure and education conditions (Bilal 
et al., 2021). 

Lastly, we introduced remotely sensed NTL, which is another widely 
used proxy of economic activities (Bennett & Smith, 2017). We 
measured area-mean of annual average NTL intensity for each city using 
the gridded VIIRS Stray Light Corrected Nighttime Day/Night Band 
Composites Version 1 dataset between 2014 and 2022. We expected NTL 
to be correlated with LSTnight given the collection time of the dataset 
being close to midnight (1:30). 

Both per capita GDP and SEI were available by administrative 
boundaries, whereas total carbon footprint and NTL were measured by 
the main urban cluster (Table S1). In our sample, the four economic 
indicators were weakly correlated with each other, with correlations 
between 0.162 and 0.514 (Spearman’s rank correlation), suggesting that 
they described different aspects of economic development (Fig. S1). 

Urban green space as mediators. We introduced measures of urban 
green space to address the second research question on mediating effect. 

Fig. 1. (a) Map of cities included and (b) illustration of the main urban cluster. In (a), colors represent the trend of daytime land surface temperature and baseline 
greenness (year 2001), and marker size represents per capita GDP. 
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We used Normalized Difference Vegetation Index (NDVI), commonly 
referred as greenness in the literature, as a proxy for the quantity and 
vigor of urban green space. We obtained NDVI from the gridded MODIS 
daily satellite products at 250 m resolution (MOD13Q1.006). For each 
city-year observation, we calculated its greenness as the area-median of 
pixel-wise (i.e. per grid cell) annual maximum NDVI. We used pixel-wise 
annual maximum NDVI to capture the largest extent of urban green 
space, regardless of seasonality or different vegetation types. Similar to 
temperature, the end product here was city-specific time series of 
greenness, and we calculated the baseline and trend (Sen’s slope) of 
these time series as specific measures for green space. Baseline greenness 
measures the quantity and growth conditions of green space as of 2001, 
the starting year of the analysis, and greenness trend (i.e., greening) 
measures the changes in green space quantity and growth conditions 
between 2001 and 2022. 

Covariates. We included covariates for climate zones, elevation, 
coastal adjacency, population density, and total built up area, which 
may confound the relationship between temperature trend, economic 
indicators, baseline greenness, and greening. We selected these cova-
riates using a directed acyclic graph (DAG, Fig. 2), which is a common 
approach for variable selection. 

Climate zones influence local temperature and conditions of green 
space, and at the same time they may influence economic conditions, 
therefore qualifying as a confounder. For similar reasons, we controlled 
for average city elevation, adjacency to coast, population density, and 
total urban area. We obtained climate zones of the cities from Köppen- 
Geiger classification (Peel et al., 2007). Köppen-Geiger classification 
data is in gridded format, and we assigned each city to the climate zone 
that occupied most of the city’s area. Together, our study area contained 
tropical, temperate, arid, and polar climates. We calculated average 

elevation per city using the 30 m resolution Shuttle Radar Topography 
Mission (SRTM) dataset (Farr et al., 2007). Moreover, we derived total 
urban area by counting all the urbanized grid cells from a revised 
version of Global Urban Footprint (GUF) dataset (Esch et al., 2018). The 
revision, conducted by the SALURBAL project, assigned open and green 
space enclosed by GUF urban footprint as “urban” to create more 
continuous urban areas. By normalizing total population by the total 
urban area calculated earlier, the SAULRBAL project estimated city-level 
population density (Quistberg et al., 2018). Lastly, coastal adjacency 
was determined as whether a city had its boundary within 1 km from the 
coastline outlined by the Global Self-consistent, Hierarchical, High- 
resolution Geography Database (NOAA National Centers for Environ-
mental Information, 2017; Wessel & Smith, 1996). 

The data sources and their timeframes and spatial units of mea-
surement for the outcome, exposures, mediators, and covariates are in 
Table S1. Prior to regression modeling, we examined descriptively the 
Spearman’s rank correlations among the temperature measures, eco-
nomic indicators, greenness, and greening. 

2.4. Path analysis with structural equation modeling 

Model setup. We built a series of structural equation models (SEMs) 
and used path analysis to disentangle the relationships between tem-
perature trends, economic indicators, baseline greenness, and greening. 
To avoid potential mediation and multicollinearity among the economic 
indicators, we investigated each indicator separately by including one 
indicator at a time in the model. These models were cross-sectional due 
to the constraints in obtaining longitudinal economic data. The basic 
structure of these SEMs is illustrated in the DAG (Fig. 2), where we 
hypothesized that some of the effect of economic indicators on 

Fig. 2. Directed acyclic graph (DAG) or path diagram illustrating the relationships between economic indicators (exposure), temperature trends (outcome), baseline 
greenness and greening (mediators), and covariates. Total effect measures the overall association between economic indicators and warming, including the direct 
effect and the indirect effect through green space. The direct effect is the association between economic indicators and warming, excluding the indirect effect through 
green space. The indirect effect represents the association between economic indicators and warming transmitted through green space. 
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temperature trends occurred through mediators including baseline 
greenness and greening. These models controlled for the covariates in 
section 2.3 and country-fixed effects to account for the differences be-
tween countries. In addition, we estimated country-cluster-robust stan-
dard errors to accounts for the autocorrelation among cities within the 
same country. We used chi-square, root mean square error of approxi-
mation (RMSEA), standardized root mean squared residual (SRMR), and 
comparative fit index (CFI) to calculate model fit of SEMs (Hooper et al., 
2007). We fitted the models using the R package lavaan (Rosseel, 2012). 

We interpreted the results of path analysis using the total, direct, and 
indirect effect of economic indicators on temperature trends. Total effect 
(α1) measures the overall association between economic indicators and 
warming, including the direct effect and the indirect effect through 
green space. The direct effect (β1) is the association between economic 
indicators and warming, excluding the indirect effect through green 
space. The model also estimated the associations (direct effect) of eco-
nomic indicators with baseline greenness (γ1) and greening (γ2), and 
those of baseline greenness and greening with the temperature trends (γ3 
and γ4). The indirect effect (α1 − β1, or γ1 × γ3 + γ2 × γ4) represent the 
association between economic indicators and warming transmitted 
through green space (Fig. 2). 

Robustness checks. To test if the associations identified with our 
full sample varied by types of cities, we performed stratified analyses by 
economic conditions (top versus bottom 50% for a given economic in-
dicator) and climate zones (arid versus non-arid) of the cities. These 
additional analyses are supported by the evidence that more economi-
cally developed cities may experience a slower warming rate following 
an inverted U shape of Environmental Kuznets Curve (Grossman & 
Krueger, 1995), that economically developed cities are resourceful to 
implement urban greening programs (Zhang et al., 2022), and that green 
space is sparser and more unevenly distributed in arid cities (known as 
the “luxury effect”, see Leong et al., 2018). 

3. Results 

3.1. Sample characteristics 

A substantial portion (92% by Tair, 75% by LSTday, and 85% by 
LSTnight) of the 359 cities in our analysis experienced warming between 
2001 and 2022. The average rate of warming was 0.221 ◦C/decade 
(interquartile range, IQR: [0.121, 0.335]) by Tair, 0.199 ◦C/decade (IQR: 
[0.005, 0.430]) by LSTday, and 0.337 ◦C/decade (IQR: [0.120, 0.558]) 
by LSTnight (Table S2). In addition, there were weak correlations be-
tween the three temperature trends, measured by Spearman’s rank 
correlation. The strongest correlation of 0.519 was between trends of 
Tair and LSTnight, followed by 0.097 between trends of LSTday and 
LSTnight, and − 0.026 between trends of Tair and LSTday. Furthermore, 
these temperature trends were weakly correlated with the four eco-
nomic indicators, with correlation coefficients between − 0.168 and 
0.210 (Fig. S1). 

Between 2001 and 2022, 88% of cities experienced a decrease in 
greenness over time (browning). Greening on average was − 0.029/ 
decade (IQR: [-0.043, − 0.014], Table S2), and it had weak and incon-
sistent correlations with economic indicators (per capita GDP: r = 0.255; 
total carbon footprint, r = -0.012; SEI, r = 0.237; NTL, r = 0.023) 
(Fig. S1). In addition, baseline greenness (mean: 0.545, IQR: [0.514, 
0.623]) showed negative correlations between − 0.209 and − 0.408 with 
the economic indicators. The temperature trends had weak to moderate, 
negative correlations with baseline greenness and greening (i.e., more 
greenness or greening, less warming), except for the positive correlation 
between LSTday trend and baseline greenness. The correlations between 
temperature trends and baseline greenness were between − 0.321 and 
0.138, whereas the correlations between temperature trends and 
greening were between − 0.006 and − 0.304 (Fig. S1). 

3.2. Associations between economic conditions and warming 

The structural equation models (SEMs) generally had satisfactory 
goodness-of-fit, with all SRMRs less than 0.08, and most CFIs greater 
than 0.96 (Table S3), consistent with the recommendations by Hu & 
Bentler (1999). We reported but did not solely rely on chi-square to 
determine model fit, as chi-square can be upwardly biased in models 
with many variables and small number of observations (n = 359) like 
this study (Shi et al., 2019). SEM estimates the total, direct, and indirect 
effects altogether, and as a robustness check for model fit we estimated 
these effects separately using ordinary least squares (OLS) models. The 
estimated effects from OLS models were similar to the ones from SEM. 
The stratified models for cities in arid climate have a poorer model fit, 
but we kept these models given their satisfactory SRMR values 
(Table S3) and to compare with other models. We represented the 
estimated model coefficients with forest plots for comparison purpose 
(Figs. 3–5), and we supplied path diagrams with the estimated model 
coefficients in the Supplementary Material (Fig. S2). Detailed model 
coefficient estimates can also be found in Tables S4-S7. 

Our path analysis revealed some evidence that economic indicators 
were associated positively with warming based on the total effect (i.e., 
the association between an economic indicator and temperature trends 
including the proportion of association transmitted through baseline 
greenness and greening). There were statistically significant and posi-
tive total effects of SEI and NTL on Tair trend, with a one-standard- 
deviation (1-SD) increase in city-level SEI and NTL associated with 
0.032 ◦C/decade (95% confidence interval, CI: [0.009,0.055]) and 
0.013 ◦C/decade (95% CI: [0.001,0.024]) higher Tair trend, respectively 
(Fig. 3(a)). In addition, a 1-SD increase in total carbon footprint and NTL 
was associated with 0.037 ◦C/decade (95% CI: [0.011,0.064]) and 
0.049 ◦C/decade (95% CI: [0.037,0.061]) higher LSTday trend, respec-
tively (Fig. 3(b)). The total effects of economic indicators on LSTnight 
trends were statistically non-significant (Fig. 3(c)). 

Focusing on the direct effect of economic indicators on warming (i.e., 
the association between an economic indicator and temperature trends 
excluding the portion of association transmitted through baseline 
greenness and greening), we found a few statistically significant asso-
ciations between economic indicators and LSTday trend (Fig. 4 (b)). The 
direct effects of economic indicators on other temperature trends were 
statistically non-significant (Fig. 4 (a, c)). Total carbon footprint and 
NTL showed statistically significant and positive direct effects on LSTday 
trend, with a 1-SD increase in total carbon footprint and NTL associated 
with 0.047 ◦C/decade (95% CI: [0.014,0.079]) and 0.055 ◦C/decade 
(95% CI: [0.047,0.062]) higher LSTday trend, respectively (Fig. 4 (b)). 

3.3. Indirect effects through urban green space 

City-wide economic conditions correlated negatively with baseline 
greenness but positively with greening to a lesser extent (Table S5). 
Furthermore, baseline greenness and greening correlated negatively 
with different temperature trends (Table S6). We found negative direct 
effects of per capita GDP, SEI, and NTL on baseline greenness, while the 
direct effect of total carbon footprint on baseline greenness were sta-
tistically non-significant. The direct effects of per capita GDP on 
greening were positive, whereas the direct effects of other economic 
indicators were statistically non-significant (Table S5). There were sta-
tistically significant, negative associations between baseline greenness 
and trends of Tair and LSTnight, but no statistically significant associa-
tions between baseline greenness and LSTday trend (Table S6). Greening 
was negatively and significantly associated with trends of LSTday and 
LSTnight, but its associations with Tair trend was statistically non- 
significant (Table S6). 

The individual direct effects between economic conditions, green 
space, and temperature trends together lead to some statistical evidence 
that better economic conditions contributed to faster warming by 
lowering baseline greenness. Indirect effects of economic conditions on 
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temperature trends through baseline greenness were statistically sig-
nificant and positive in several paths, including the paths of “per capita 
GDP → Tair trend”, “SEI → Tair trend” and “NTL → Tair trend” (Fig. 5(a)), 
and the paths of “per capita GDP → LSTnight trend” and “SEI → LSTnight 
trend” (Fig. 5(c)). However, the indirect effects through greening were 
statistically non-significant in all the paths examined (Fig. 5), likely due 
to the statistically uncertain associations between economic conditions 
and greening (Table S5). Detailed estimates of these indirect effects can 
also be found in Table S7. 

3.4. Stratified analysis by development levels and climate zones 

The stratified analysis by economic development levels found that 
the total and direct effects of economic conditions on temperature trends 
estimated separately with more and less developed cities (top versus 
bottom 50% by a given economic indicator) were generally consistent 
with findings from the main analysis, namely, better economic condi-
tions were associated with faster warming (Fig. S3). These findings were 
also supported by the stratified analysis by arid and non-arid cities 
(Fig. S4). The only exceptions were the negative total and direct effects 
of SEI on LSTday trend in arid cities (Fig. S4(c)). 

The positive indirect effect of economic conditions on temperature 

Fig. 3. Total effects of economic conditions on tem-
perature trends. Total effects (represented by the 
markers) are changes in temperature trend (◦C/ 
decade) for a one-standard-deviation increase in a 
corresponding economic indicator, when holding 
other covariates constant and factoring into the 
portion of changes transmitted through baseline 
greenness and greening. Models are adjusted for 
climate zone, coastal adjacency, land elevation, pop-
ulation density, total urban area, and country-fixed 
effects. 95% confidence intervals are marked by the 
error bars. Estimates for the total effects are also re-
ported in Table S4. GDP: per capita GDP; CO2: total 
carbon footprint; SEI: Social Environment Index; NTL: 
nighttime light intensity.   

Fig. 4. Direct effects of economic conditions on 
temperature trends. Direct effects (represented by the 
markers) are changes in temperature trend (◦C/ 
decade) for a one-standard-deviation increase in a 
corresponding economic indicator, when holding 
other covariates constant and excluding the propor-
tion of changes transmitted through baseline green-
ness and greening. Models are adjusted for baseline 
greenness, greening, climate zone, coastal adjacency, 
land elevation, population density, total urban area, 
and country-fixed effects. 95% confidence intervals 
are marked by the error bars. Estimates for the direct 
effects are also reported in Table S4. GDP: per capita 
GDP; CO2: total carbon footprint; SEI: Social Envi-
ronment Index; NTL: nighttime light intensity.   

Y. Ju et al.                                                                                                                                                                                                                                       



Landscape and Urban Planning 240 (2023) 104896

7

trends through baseline greenness identified in the main analysis was 
supported in several cases by the stratified analysis (Fig. S3(a, c, g, h), 
Fig. S4(a, c, d, g)). A few exceptions were also observed. First, in less 
developed cities, the indirect effect through baseline greenness in the 
paths of “SEI → LSTday trend” and “NTL → LSTday trend” was negative 
(Fig. S3(g, h)), which was due to the positive association between 
baseline greenness and LSTday trend. Positive association between 
baseline greenness and LSTday trend was also found in non-arid cities, 
which similarly caused negative indirect effects of economic conditions 
on LSTday trend through baseline greenness (Fig. S4(e, g, h)). Second, in 
arid cities, we found positive associations between total carbon footprint 
and baseline greenness, which in turn lead to negative indirect effects 
through baseline greenness in the paths of “total carbon footprint → Tair 
trend” and “total carbon footprint → LSTnight trend” (Fig. S4(b)). 

Furthermore, the stratified analysis provided statistical support for a 
negative indirect effect through greening. In more developed cities, we 
found negative indirect effects through greening in paths involving per 
capita GDP (Fig. S3(a)). Negative indirect effect through greening was 
also identified for the less developed cities in the “per capita GDP → 
LSTday trend” path (Fig. S3(e)). Surprisingly, with less developed cities, 
the indirect effect through greening in the “NTL → LSTday trend” path 
was positive (Fig. S3(h)), resulting from negative association between 
NTL and greening. The negative indirect effect through greening was 
also evident in arid cities, with statistically significant ones in the paths 

of “per capita GDP → LSTday trend”, “per capita GDP → LSTnight trend” 
(Fig. S4(a)), “SEI → LSTnight trend” (Fig. S4(c)), and “NTL → LSTnight 
trend” (Fig. S4(d)). However, none of this indirect effect through 
greening were statistically significant in non-arid cities. 

4. Discussion 

Regulating urban warming to improve human well-being urgently 
requires insights into how the well-studied physical drivers (e.g. changes 
in green space) are governed by less studied socioeconomic factors 
(Drescher, 2019; Jenerette et al., 2006). Our analysis based on 359 
major Latin American cities in 10 countries quantifies the relationship 
between urban warming (i.e., increases in temperature over time) and 
multiple economic indicators, and evaluates the mediating role of urban 
green space in this relationship (summarized in Fig. 6). More specif-
ically, we find that the nature and strength of associations between 
urban warming and economic conditions and mediation through urban 
green space vary by the economic indicator and temperature measure, 
affecting their interpretation (Figs. 3-5, also Fig. S3-S4 and Table S4-S7). 

4.1. Contributions of economic conditions to urban warming 

The positive total and direct effects of economic conditions on tem-
perature trends suggest that better economic conditions may contribute 

Fig. 5. Indirect effects of economic conditions on temper-
ature trends through baseline greenness and greening. In-
direct effects (represented by the markers) are changes in 
temperature trend (◦C/decade) for a one-standard- 
deviation increase in a corresponding economic indicator 
transmitted through baseline greenness and greening, when 
holding other covariates constant. Models are adjusted for 
economic conditions, climate zone, coastal adjacency, land 
elevation, population density, total urban area, and 
country-fixed effects. 95% confidence intervals are marked 
by the error bars. Estimates for the indirect effects are also 
reported in Table S7. GDP: per capita GDP; CO2: total 
carbon footprint; SEI: Social Environment Index; NTL: 
nighttime light intensity.   
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to faster warming. SEI and NTL had positive total effects on Tair trend, 
and total carbon footprint and NTL showed positive total and direct 
effects on LSTday trend (Figs. 3-4, Fig. 6 and Table S4). Total carbon 
footprint reflects the scale of human and economic activities, and it is 
expected to contribute positively to urban warming, similar to earlier 
findings on the positive association between city size, city-wide GDP and 
urban heat island effect (Y. Li et al., 2020). By construct, cities with 
higher SEI tend to have better housing and infrastructure conditions 
(Bilal et al., 2021), which may at the same time have a higher prevalence 
of heat-absorbing construction materials (e.g. pavement) that exacer-
bate warming (Myint et al., 2013). While improved housing conditions 
reflected by higher SEI may at the same time improve building energy 
efficiency, we only observed negative associations between SEI and 
LSTday trend in arid cities. NTL reflects human and economic activities 
particularly during the nighttime (Bennett & Smith, 2017), which was 
expected to contribute to greater nighttime warming. Interestingly, we 
did not find statistically significant total or direct effects of NTL on 
LSTnight trend, while these effects on Tair and LSTday trends were sta-
tistically significant. 

Positive associations between economic conditions and temperature 
trends observed in this study differ from some prior research findings. 
For example, one study based on Chinese cities found that per capita 
GDP was negatively associated with urban heat island effect, and the 
authors speculated that lower energy use per unit of GDP might alleviate 
urban warming (Y. Li et al., 2020). It is also plausible that more devel-
oped cities may adopt energy efficiency programs in architecture and 
transportation to curb urban warming (Núñez Collado & Wang, 2020; 
Rehermann & Pablo-Romero, 2018). However, these strategies may not 
reverse the growing trend of energy use and heat releases due to growing 
demand (Rehermann & Pablo-Romero, 2018). 

4.2. The mediation of green space on warming associated with economic 
conditions 

The legacy loss of green space, reflected by lower baseline greenness 
as of year 2001 in cities with better economic conditions, exacerbates 
warming in Tair and LSTnight attributable to economic development. 
Baseline greenness was negatively associated with economic indicators 
except total carbon footprint (Fig. 6 and Table S5), which, coupled with 
its salient cooling potential for Tair and LSTnight trends (Fig. 6 and 
Table S6), suggests that baseline greenness mediates the association 
between economic conditions and warming (Fig. 5 and Table S7). The 

lack of green space in cities with better economic conditions has been 
reported in a handful of studies focusing on Latin America (Ju et al., 
2021), China (G. Li et al., 2015; Sun et al., 2011), and the US (Browning 
& Rigolon, 2018), while the cooling effect of green space has been 
extensively studied (e.g. Ziter et al., 2019). Low baseline greenness here 
likely reflects legacy land cover changes in the course of economic 
development and urbanization prior to our study period (2001–2022), 
given that we excluded the differences in background environment by 
conditioning on several biophysical covariates. Therefore, our finding 
provides statistical evidence that improved economic conditions exac-
erbates urban warming measured by Tair and LSTnight through a legacy of 
converting green space to other land covers. However, the negative in-
direct effect of baseline greenness on the associations between total 
carbon footprint and trends of Tair and LSTnight in arid cities (Fig. S4(b)) 
were contrary to what was reported for the rest of the cities. This was 
due to the positive association between total carbon footprint and 
baseline greenness, a pattern suggesting that larger and more developed 
cities in arid climates might be more resourceful in maintaining green 
space, which has been reported in a few other studies (Schell et al., 2020; 
Zhang et al., 2022). 

In contrast to earlier findings suggesting mediation of baseline 
greenness on warming of Tair and LSTnight associated with economic 
conditions, such mediation was statistically non-significant for LSTday 
trend (Fig. 5 and Table S7). This was attributable to the non-significant 
associations between baseline greenness and LSTday trend, contrasting 
with the significant associations observed for Tair and LSTnight trends 
(Fig. 6 and Table S6). A potential explanation could lie in the different 
physical nature of these temperatures: compared with Tair and LSTnight, 
LSTday trend is more sensitive to temporal changes in microclimate 
conditions, particularly those changes in photosynthetically active 
vegetation and non-vegetated surfaces over time (Nichol, 2005; Oke, 
1976). Since baseline greenness does not directly reflect such temporal 
changes, its uncertain association with LSTday trend may be expected. 
Conversely, the association is statistically significant between LSTday 
trend and greening that reflects temporal changes in green space (Fig. 6 
and Table S6). However, we identified statistically significant and pos-
itive association between baseline greenness and LSTday trend in less 
developed and non-arid cities, contrary to the expected cooling effect. 
The omitted factors driving this unexpected association require further 
investigation. 

We found a statistically non-significant mediating effect of greening 
on the association between economic conditions and warming using the 

Fig. 6. Summary of the relationships between economic conditions and urban warming, and the mediating role of baseline greenness and greening. Only statistically 
significant relationships are highlighted. Refer to Figs. 3–5 and Tables S4–S7 for detailed model estimates. GDP: per capita GDP; CO2: total carbon footprint; SEI: 
Social Environment Index; NTL: nighttime light intensity. 
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entire sample of 359 cities. Despite the significant cooling effect of 
greening on both LST trends (Fig. 6 and Table S6), we found limited 
statistically evidence that greening was associated with economic con-
ditions (Fig. 6 and Table S5), causing the mostly non-significant medi-
ation. The mostly non-significant association between economic 
conditions and greening may also reflect our focus on the main urban 
cluster where land cover changes including greening is likely limited 
(Fig. 1(b)). However, the association between economic conditions and 
greening may become more evident when using alternative definitions 
of a “city”. For instance, we previously found that more developed Latin 
American cities defined by administrative boundaries experienced 
greater greening between 2000 and 2015 (Ju et al., 2021). In addition, 
we only found statistically significant cooling effect of greening on LST 
trends but not on Tair trend (Fig. 6 and Table S6), consistent with that 
LSTs were generally more sensitive to land cover changes than Tair. 

Despite the overall pattern being statistically non-significant, there 
was some statistical support for the negative mediating effect of 
greening on the relationship between economic conditions and warming 
among arid cities (Fig. S4(a, c, d), and less so for more economically 
developed cities (Fig. S3(a)). The finding suggested that cities of better 
economic conditions, particularly those in arid climate, are more likely 
to enjoy cooling from recent greening when compared with other cities. 
This adds evidence to the hypothesis of “luxury effect” and “deprivation 
amplification”, suggesting that cities of higher socioeconomic status 
tend to enjoy greater environmental resources and their ecosystem 
services (Macintyre, 2007; Schell et al., 2020). 

4.3. Implications for urban planning and green space management 

Together, our findings call for more equitable urban greening efforts 
in Latin American cities. Despite the well-documented cooling effect of 
green space and its promise as a heat-mitigating urban planning strat-
egy, we confirmed that green space and its cooling potential were not 
evenly distributed between the cities of different economic conditions in 
Latin America. The negative association between economic conditions 
and baseline greenness can be explained by green space losses during 
early stages of urbanization and economic development. This loss of 
green space further exacerbates urban warming. While cities with better 
economic conditions may have the resources to maintain and restore 
their green space (Zhang et al., 2022), less developed cities may 
continue to convert green space to built-up areas to boost economic 
development and urbanization. The latter trend means that less devel-
oped cities will have a higher chance to lose potential cooling from green 
space, which in turn exacerbates their warming and lead to other con-
sequences such as elevated heat-mortality risks (Kephart et al., 2022). 

Urban greening programs should prioritize less developed cities for a 
few reasons. First, these cities likely face greater pressure to preserve 
green space from ongoing urbanization and often lack the resources for 
urban greening and other climate adaptation programs. Second, less 
developed cities may continue to experience urban warming from other 
heat sources, such as increased energy use and traffic volume in the 
course of economic development and urbanization. However, socio-
economic equity in urban greening programs is likely an overlooked 
agenda in Latin America, given the lack of planning, the complexity of 
its governance, and the entrenched inequalities in this region (Arantes 
et al., 2021; Fernandez et al., 2022). 

4.4. Limitations and future research directions 

Several limitations and future research directions should be 
addressed. First, due to limited temporal availability of LST data, we 
only included a 22-year window (2001–2022) in this study. Therefore, 
future studies should focus on air temperature that has longer historical 
records. Second, baseline greenness and greening based on remotely 
sensed vegetation indices did not explicitly convey type, biomass, 
structure, and landscape pattern of green space (Ju et al., 2021). This 

makes it hard to pinpoint more specific pathways connecting urban 
warming with economic conditions through green space. For example, if 
more economically developed cities have more fragmented green space, 
and to what degree this fragmentation contributes to warming. Future 
studies can address this shortcoming by employing more semantically 
explicit maps of urban green space, which are increasingly available 
(Huang et al., 2021). Another specific pathway worthy of investigation 
is the disparity in cooling efficiency of green space, which starts to be 
addressed by few studies focusing on the contrast between advantaged 
versus deprived neighborhoods in US cities (Lin et al., 2023) and be-
tween Global North and South cities (Y. Li et al., 2023). Third, economic 
data for the city samples were not available over an extended timeframe, 
limiting our ability to perform longitudinal analysis. A longitudinal 
analysis with time varying economic indicators is critical for identifying 
the causal effect of economic development on urban warming, which we 
investigated here through regression adjustment and path analysis but 
with cross-sectional data. 

Furthermore, information on additional urban warming contributors 
(e.g., building energy use, transportation emissions, and urban design) 
may still be sparse. This limits further analyses on additional paths be-
tween economic conditions and warming, as well as fine-grained studies 
at neighborhood scale that are more relevant to decision-makers and 
stakeholders. Future studies could also adopt comprehensive indices 
describing the sustainability status of the city to examine whether cur-
rent sustainability efforts curb urban warming and improve green space 
provisioning. Lastly, it is possible that some unobserved variables, such 
as urban design and planning, caused omitted variable bias in the as-
sociations identified in our analysis. This may explain some unexpected 
findings in this study, for example, the results showing positive associ-
ations between baseline greenness and LSTday trend in less developed 
and non-arid cities. These limitations also suggest that in addition to 
observational studies, research on this topic should consider process- 
and agent-based models on how different urban sectors (e.g. building 
energy use and transportation) and specific design/planning decisions 
(e.g. those on the provisioning and spatial configuration of green space) 
contribute to urban warming (Kong et al., 2016; McRae et al., 2020). 

5. Conclusions 

In this study, we investigated the relationship between urban 
warming (increases in temperature over time), economic conditions, 
and the provisioning and changes in urban green space using a sample of 
359 major Latin American cities from 10 counties between the years of 
2001 and 2012. We found that cities with better economic conditions 
were associated with faster urban warming. In addition, green space 
mediated the association between city-wide economic conditions and 
urban warming through two opposite paths. In one end, better economic 
conditions were associated with a legacy loss of green space and lowered 
baseline greenness as of year 2001, leading to faster warming. At the 
same time, there was modest evidence that more desirable economic 
conditions were associated with greater greening between 2001 and 
2012, which led to cooling and partially curbs raising temperatures, 
especially in arid and more economically developed cities. 

Together, these findings shed light on how green space regulates 
urban warming under the influence of economic conditions. While the 
cooling effect of green space is well recognized, green space itself may 
not always be available due to historical losses from development, 
inequitable land use practices, and segregation. The increased greening 
in more economically developed cities, although marginal as observed 
in this study, shows the potential to curb urban warming if such greening 
trend continues. Further attention should be paid to studying urban 
greening given its promising role to provide climate regulation and 
other ecosystem services, while addressing its potential socioeconomic 
disparities. 
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